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Abstract

Performance measures for families of classification system families that rely upon the

analysis of receiver operating characteristics (ROCs), such as area under the ROC curve

(AUC), often fail to fully address the issue of risk, especially for classification systems

involving more than two classes. For the general case, we denote matrices of class

prevalences, costs, and class-conditional probabilities, and assume costs are subjectively

fixed, acceptable estimates for expected values of class-conditional probabilities exist, and

mutual independence between a variable in one such matrix and those of any other matrix.

The ROC Risk Functional (RRF), valid for any finite number of classes, has an associated

parameter argument, that which specifies a member of a family of classification systems,

and which system minimizes Bayes risk over the family. We typify joint distributions for

class prevalences over standard simplices by means of uniform and beta distributions, and

create a family of classification systems using actual data, testing independence

assumptions under two such class prevalence distributions. We minimize risk under two

different sets of costs.
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RISK-BASED COMPARISON OF CLASSIFICATION SYSTEMS

I. Introduction and Mathematical Foundations

The concept of risk is a major feature of Bayesian decision theory [5, pp. 24-28], [18, p.

437]. Its power is evident in that it takes into account not only the relative severity of

expected conditional losses for each possible decision, but also the likelihood of events upon

which the occurrence of each loss is conditioned. It allows definition of these quantities

through the use of either discrete or continuous random variables, or a combination of

both. In this way, it accounts for many characteristics of the operating environment.

The term Receiver Operating Characteristic (ROC) seems to refer directly to this

type of decision-theoretical framework, yet practical applications of decision theory in

which this term appears often ignore critical aspects of Bayesian theory. To show this, a

brief introduction to ROC analysis is necessary, as is a precise set of mathematical

definitions, to establish a framework for possible correction of these oversights.

1.1 Introduction

The field of Receiver Operating Characteristic analysis emerged in the 1940s, during

early attempts to discern between the presence or absence of signals amidst noise [6, pp.

1-2]. Since there are only two possible outcomes, such a signal detection process is an

example of two-class or binary classification.

In signal detection, there are two possible classification errors—falsely perceiving the

presence of signals amidst noise when there is only noise, and failing to detect a signal in
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the midst of noise. One representation of the ROC for a binary classification system is

simply a vector of the likelihoods of these errors. If the method of classification changes, so

may these likelihoods, thereby generating a different ROC vector. A collection of estimates

for such ROC vectors plotted on a unit square may offer limited visual insight into

comparison of the classification methods whose characteristic behavior they represent, and

even more when other factors of interest are plotted on a third axis [10]. Many authors

have developed advanced geometrical frameworks relating to the points so plotted, due to

the common practice of calculating areas under a curve constructed of these plotted

points [8], [10], [12], [13], [14], [21], [22], [26], [34], [36]. The use of ROCs in such

comparative decision-making is referred to as ROC analysis.

Even though ROC analysis is used in many fields to compete binary classification

techniques, it appears that very few of its proponents have fully realized the importance

and potential of risk-based comparison as a tool for comparing classification techniques,

especially those in which there are more than two distinct classes [30, pp. 57-64], [31, p.

352], [32, p. 4]. Although practical risk-based comparison of classification systems requires

what could be considered unrealistic independence assumptions to enable the risk

calculations, the possible insights gained when these assumptions are met may at least

justify the expense of testing them, and when viewed in light of the implicit assumptions

connected with a failure to fully consider all elements of the risk calculation, these

assumptions may not be harsh at all. Since the failure to meet these assumptions is rarely

mentioned in modern ROC analysis literature, the reason for not calculating risk may

simply be the lack a practical and rigorous mathematical framework for its analysis. There

is recent work, however, which constitutes a foundation on which to build a framework for
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measuring the performance of classification systems, with Bayes risk as the measure of

optimality, and incorporating some of the independence assumptions mentioned above [32].

The intent of this thesis is neither to show how these assumptions may be met, nor to

stipulate as to the relative importance of actually meeting them, but instead to show how

they may be tested, and then to assume that even if they are not met, the disadvantage of

such failure is mitigated by the ability to easily calculate risk. The major point of interest

is that geometric analyses are replaced by risk-based comparisons, thereby possibly

lessening the need to construct curves or surfaces, or to calculate geometric quantities.

1.2 Definitions and Assumptions

Before proceeding, it is necessary to define notation and terms relating to general

classification theory and ROC analysis. Examples from the field of signal detection will

illustrate selected concepts.

Definition 1 (Experiment). An experiment is a complex of reproducible conditions

resulting in a set of well-defined outcomes [16, pp. 3-5], [29, p. 32].

For example, the presence of electromagnetic radiation constitutes a possible signal

detection experiment.

Definition 2 (Elementary Event). An elementary event is an experimental outcome which

cannot be further decomposed into other, more basic experimental outcomes [33, p. 26].

An elementary event in signal detection could be e = a detectable instance of

electromagnetic radiation exists.

Definition 3 (Event Set). An event set is the set E =
{
eλ

}
λ∈Λ

of possible elementary
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events resulting from a given experiment, where the index set Λ may be

uncountable [16, pp. 3-5], [29, p. 33], [33, p. 27].

Definition 4 (Sensor, Data Set). A function s with event set domain E, whose action is to

observe elementary events e and gather data about them; therefore, the range of a sensor

is a set D of data elements de corresponding to elementary events observed [32, p. 1].

In signal detection, a data set could be a hard disk containing information gathered

through a cable connected to a radio signal detection machine.

Definition 5 (Processor, Feature Set). Given a data set D , a processor is a function p

with data subset domain D ′ ⊆ D, whose action is to transform data corresponding to

elementary events e observed by a sensor s : E −→ D (whose range is an event set E and

whose range contains the domain of p) into a vector of numbers, usually real-valued;

therefore, the range of a processor is a feature set F of finite-dimensional vectors fe

corresponding to elementary events e whose representational data points de are elements

of the domain of p [32, p. 1]. An element fe ∈ F of a feature set is called an exemplar.

In signal detection, a processor could be a computer that receives a floppy disk

containing some of the data gathered by a sensor and performs calculations to produce a

matrix of real numbers, with columns corresponding to wave amplitude and frequency

variables, and with exemplars as row vectors in the matrix corresponding to elementary

events observed by the sensor. Part of these calculations may also create new variables that

are related to, but not defined strictly the same as, the variables observed by the sensor.

For example, Principal Components Analysis (PCA) is a method of reducing the number of

features, by creating a few linear combinations of them which explain most of the variance

in the original features matrix. The coefficients of each of these linear combinations are
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applied to each row of the original feature data to produce a principal component score,

which in turn becomes a new feature variable.

Definition 6 (Event). Any subset A ⊂ E of an event set is called an event [29, p. 34].

Note that any set E is always regarded as a subset E ⊂ E of itself, and the empty set ∅

is a subset of every set besides itself, even though we may not explicitly denote its presence.

Also, for A ⊂ E, if any elementary event e ∈ A occurs, then A has also occurred.

In signal detection, the sets E1 = {radiation with signals amidst noise is present},

and E2 = {only noise is present} are all subsets of the event set E = E1 ∪ E2, as is the set

E itself; therefore, each set listed above constitutes an event.

Definition 7 (Finite Set Partition). Given a non-empty set E and a finite index set Λ, a

collection of subsets
{
Eλ ⊂ E

}
λ∈Λ

is a finite set partition of E when the following hold:

(i) Eλ ∩ Eµ = ∅, ∀ µ, λ ∈ Λ ∋ µ 6= λ, and

(ii)
⋃

λ∈Λ

Eλ = E

i.e.,
{
Eλ ⊂ E

}
λ∈Λ

is a finite collection of mutually exclusive subsets of E whose union is

the whole set E [29, p. 36].

Definition 8 (Classifier, Label Set). A classifier is a function c with feature subset

domain F ′ ⊂ F, whose action assigns exactly one label ℓ out of a finite set L of distinct

labels to each feature vector f ∈ F ′ ; therefore, a label set L = {ℓ1, ℓ2, ℓ3, . . . , ℓn} is the

range of an n-class classifier c : F ′ −→ L, such that if an event set E is the domain of a

sensor s : E −→ D whose range contains the domain D ′ ⊂ D of a processor p : D ′ −→ F,

whose range in turn contains the domain F ′ ⊂ F of c, then L partitions E into a set of n

mutually exclusive subsets
{
Ej

}n

j = 1
called classes, whose union is the entire event set E,
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such that each class Ej ⊂ E corresponds to exactly one label ℓj ∈ L [32, pp. 1-2].

A signal detection classifier could be an artificial neural network operating on rows

(exemplars) extracted from a principal component score matrix whose row vectors

correspond to particular instances of electromagnetic radiation. Note that the method of

creating or training such a classifier, as well as testing it against a subset of the data from

which it is created, is subjective; for example, a binary classifier could be flipping a fair coin.

The signal detection label set L = {ℓ1, ℓ2} (where elementary events in class E1 =

{radiation with signals amidst noise is present} correspond to the label ℓ1, and elementary

events in class E2 = {only noise is present} correspond to the label ℓ2) induces the finite

set partition E = E1 ∪ E2, where the event set is E = {electromagnetic radiation is

present}. This is an example of a two-class partition.

Definition 9 (Classification System). Given the following:

(i) a sensor s : E −→ D with event set domain E and data set range D,

(ii) a processor p : D ′ −→ F with data subset domain D ′ ⊂ D and feature set range F,

and

(iii) a classifier c : F ′ −→ L, with feature subset domain F ′ ⊂ F and label set range L,

the composition A = c ◦ p ◦ s : E −→ L with event set domain E and label set range L

is a classification system A : E → L [32, p. 2].

Definition 10 (Threshold Set). Given any feature set F, a threshold set Θ of interest is a

set of parameters θ ∈ Θ that influence mappings with domain F. These parameters need

be neither univariate, continuous, nor real-valued.
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A signal detection threshold parameter θ1 that is neither continuous nor real-valued

could be choosing whether to flip a quarter or a nickel, whereas a continuous and

real-valued parameter θ2 might be the choice of a real-valued discriminating

criterion [5, pp. 48-49]. Some types of artificial neural net classifiers have a continuous

parameter called the spread, such that each setting of this parameter effectively defines a

new classifier, given a particular choice of methods for training. A threshold set Θ of

interest might also be the Cartesian product:

Θ =
{(

θ1, θ2

)
: θ1 ∈ Θ1, θ2 ∈ Θ2

}
= Θ1 × Θ2

of threshold sets Θ1 and Θ2 [32, pp. 1-2]. It should be noted that in practice, we only

consider a finite number of threshold parameters to approximate a continuous threshold

set, and so each distinct finite sample may be considered a separate discrete threshold set.

Definition 11 (Family of Classification Systems Over a Threshold Set). Given a threshold

set Θ such that the value of the parameter θ ∈ Θ determines the action of a classifier cθ,

a family of classification systems of the form Aθ ≡ cθ ◦ p ◦ s over the threshold set Θ is

the collection AΘ =
{
Aθ : θ ∈ Θ

}
of all such classification systems.

It should be noted here that when searching for a classification system Aθ to meet

some particular criterion from an infinite family AΘ defined over a continuous threshold

set Θ, practicality requires the creation of finite families of classification systems over

discrete samples from the continuous threshold set. Even though these samples are subsets

of the same set, they may be distinct, and thus the families of classification systems over

these sample threshold sets are also distinct.
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Definition 12 ( σ-Field). Given a non-empty set E and a countable index set Λ, a

collection E of subsets A ⊂ E is a σ-field over E when the following hold true:

(i) E ∈ E ,

(ii) if A ∈ E , then AC ∈ E , and

(iii) Aλ ∈ E , ∀ λ ∈ Λ =⇒
⋃

λ∈Λ

Aλ ∈ E

where AC ⊂ E is the complement {e ∈ E: e /∈ A} in E of the subset A ⊂ E [16, p. 2],

[27, pp. 17-18]. The σ-field E may also called a σ-algebra over E [27, p. 18], [32, p. 1].

Definition 13 (Pre-Image Set Function). Given a mapping m : E −→ L defined between

any sets E and L, the pre-image of a subset A ⊂ L is a subset m ♮(A) ⊂ E of E given by:

m ♮(A) = {e ∈ E: m(e) ∈ A} ⊂ E (1)

where we use the becaudro ( ♮ ) to denote pre-image instead of the usual inverse symbol

( −1 ) to avoid misinterpretation [32, pp. 3-4]. The pre-image set function

m ♮ : P(L) −→ P(E) is well-defined, where P(L) denotes the power set {A : A ⊂ L} of L.

When a signal detection system classifies instances of electromagnetic radiation as

either containing signals or not, the subset {instances of electromagnetic radiation classified

as containing signals amidst noise} of the event set is the pre-image of a singleton subset

{signals amidst noise} of the label set {signals amidst noise, noise alone}.

Definition 14 (Probability Measure). Given a σ-field E over an event set E, a mapping

P : E → [0, 1] is a probability measure on E , or, in other words, P is said to be

measurable with respect to the σ-field E , when the following hold true [29, pp. 41-42]:

8



(i) P (E) is defined for each event E ∈ E ,

(ii) P (E) = 1, and

(iii) given any countable collection
{
Eλ ∈ E

}
λ∈Λ

of events such that

Eλ ∩ Eµ = ∅, ∀ µ, λ ∈ Λ ∋ µ 6= λ:

P

( ⋃

λ∈Λ

Eλ

)
=

∑

λ∈Λ

P
(
Eλ

)
(2)

Note that a given probability measure P : E −→ [0, 1] may be measurable with respect to

other σ-fields besides E , and that pre-images under a probability measure P of all subsets

A ⊂ [0, 1] are measurable sets; i.e., they are events in the σ-field over which P is defined.

Definition 15 (Class Prevalence, Prior Probability). Given the following:

(a) a finite index set Λ with cardinality Card(Λ) = n,

(b) a label set L with cardinality Card(L) = n = Card(Λ),

(c) an event set E partitioned by L into classes
{
E1, . . . ,En

}
satisfying

⋃

j∈Λ

Ej = E,

(d) a σ-field E over E such that
{
Ej

}
j∈Λ

⊂ E , and lastly,

(e) a probability measure P : E → [0, 1] defined on E ,

the class prevalence pj for a particular class Ej is given by pj = P (Ej) . Note that pj is

also called the a priori probability—a.k.a. the prior probability—that a given elementary

event e ∈ E will be contained in class Ej, for some j ∈ Λ. Since
{
Ej

}n

j = 1
is a partition of

E and the probability measure P satisfies P (E) = 1 = P

(
n⋃

j = 1

Ej

)
, then by Definition

14 above, we must have
n∑

j = 1

P
(
Ej

)
= 1 =

n∑

j = 1

pj.
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Theorem 1 (Bayes Theorem). Given a probability measure P : E −→ [0, 1] defined on a

σ-field E over an event set E, and any two events X,Y ∈ E , the conditional probabilities

P (X|Y) and P (Y|X) have the following scalar relationship:

P (X|Y) =
P (X ∩ Y)

P (Y)

=
P (Y ∩ X)

P (Y)

=
P (Y|X)P (X)

P (Y)

=

[
P (X)

P (Y)

]
P (Y|X)

(3)

whenever P (Y) 6= 0; however, if P (Y) = 0, then P (X|Y) = 0, ∀ X ∈ E [33, p. 68].

Definition 16 (Class-Conditional Probability). Given the following:

(a) a classification system A : E −→ L with event set domain E and label set range L;

(b) an finite index set Λ satisfying Card(L) = n = Card(Λ),

(c) a σ-field E over E containing at least the following events:

1. all classes in the partition
⋃

j∈Λ

Ej = E induced L on E ; and

2. all pre-images A ♮

θ

(
{ℓi}

)
⊂ E of singleton label subsets {ℓi} ⊂ L;

(d) a probability measure P : E → [0, 1] on E ; and

(e) a certain class Ej with non-zero prior probability pj = P
(
Ej

)
6= 0 for some j ∈ Λ,

the class-conditional probability qi|j(A) is the conditional probability that A assigns a

certain label ℓi ∈ L to an elementary event e ∈ Ej, and is given by:
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qi|j(A) = P
(

e ∈ A ♮
[
{ℓi}

] ∣∣∣ e ∈ Ej

)

=
P

(
A ♮

[
{ℓi}

] ⋂
Ej

)

P
(
Ej

) , i, j = 1, 2, 3, . . . , n

(4)

For a class Ej with prior probability P
(
Ej

)
= 0, the class-conditional probabilities

conditioned on class Ej are given by q i|j(A) = 0, ∀ i = 1, 2, 3, . . . , n. A

class-conditional probability may take on any value in [0, 1], so for each i and j, the

class-conditional probability q i|j(A) is a well-defined probability measure; therefore, by

Definition 14 above, we have
n∑

i = 1

qi|j(A) = 1, ∀ j = 1, 2, 3 , . . . , n [29, p. 54].

Assumption 1 (Independence of Class Prevalence and Class-Conditional Probabilities).

Given an n-class classification system A, any index pair (i, j), i, j = 1, . . . , n, and any

index k = 1, . . . , n such that class Ek satisfies P
(
Ek

)
6= 0, the set

{
qi|j(A), pk

}
of any

class-conditional probability qi|j(A) and any non-zero class prevalence pk is independent.

A class-conditional probability might be the likelihood that a signal detection

classification system A will label an instance of electromagnetic radiation as class E1 ,

where this label indicates the presence of signals amidst noise, given that it actually

belongs to class E2 (e.g., the instance observed by the sensor actually contains only noise):

q1|2(A) = P
(

e ∈ A ♮
[
{ℓ1}

] ∣∣∣ e ∈ E2

)

=




P
(
A ♮

[
{ℓ1}

])

p2


 P

(
e ∈ E2

∣∣∣ e ∈ A ♮
[
{ℓ1}

] ) (5)

where the last result is provided by Theorem 1 above.

One result of Assumption 1 would be that as the class prevalence p2 changes, the

probability P
(
A ♮

[
{ℓ1}

]
∩ E2

)
must be scaled by exactly the same scalar as is p2. To

11



visualize this, imagine the event set E as a unit square, with area representing probability.

As class prevalences change, so do the sizes of the events within E which they define, so as

p2 changes, the size of the event E2 ⊂ E changes in exact proportion; Assumption 1 then

implies that the size of the event intersection A ♮
(
{ℓ1}

)
∩ E2 must also change such that its

area is scaled by the exact same scalar as is the event E2.

There are several statistical methods available to test the validity of independence

between two populations whose distributions are not both known, such as Kendall’s

Tau [11, pp. 404-405]. The null hypothesis of this particular non-parametric test is no

association or dependence between the populations [33, p. 816].

To the user of a classification system A, the conditional probability

P
(

e ∈ Ej

∣∣∣ e ∈ A ♮
[
{ℓi}

])
may be of far greater interest than the class-conditional

probability P
(

e ∈ A ♮
[
{ℓi}

] ∣∣∣ e ∈ Ej

)
; however, the set

{
qi|j

(
A

)}n

i , j = 1
of

class-conditional probabilities for A is information by which the system may be judged

prior to use, since even if Assumption 1 holds and class-conditional probabilities do not

change with class prevalences, the class prevalences themselves, such as that in the formula:

P
(

e ∈ Ej

∣∣∣ e ∈ A ♮
[
{ℓi}

])
=

[
pj

P
(
A ♮

[
{ℓi}

])
]

qi|j(A)

may change from moment to moment, even while classification occurs.

Definition 17 (Conditional Probability Matrix). Given a set
{

qi|j

(
A θ

)}n

i, j = 1
of

class-conditional probabilities for a classification system Aθ, the conditional probability

matrix is given by
[
Q

Aθ

]
ij

= qi|j

(
A θ

)
.

A collection of conditional probability matrices for various classification systems may

12



be represented by (n2 − n)-dimensional vectors in the Cartesian product [0, 1]n
2−n ⊂ Rn2−n.

If one considers a family AΘ = {Aθ : θ ∈ Θ} of classification systems over a threshold set

Θ of interest with only continuous parameters, a continuous (n2 − n)-dimensional surface

may then be constructed by infinitesimal variations of these parameters; in practice,

however, such continuous curves may only be estimated by a finite number of ROC vector

estimates representing classification systems in the family AΘ.

The most common method of representing an estimate of a class-conditional

probabilities is by calculating a transpose stochastic confusion matrix from experimental

results. There are, of course, other methods of obtaining class-conditional probability

estimates, and the distribution of ROC vectors may even be defined statistically;

Assumption 1 then allows these distributions to be treated separately from any

distributions attributed to class prevalences.

To illustrate the calculation of a transpose stochastic confusion matrix, consider a

2 × 2 contingency matrix of raw results for a binary classification experiment (or

observational study) with a finite number of classification results and a priori (or a

posteriori, in the case of an observational study) knowledge of class populations for all

exemplars classified. Such a matrix displays a simple count of the numbers of each type of

decision, including both correct and incorrect decisions, with correct decision counts along

the diagonal and with columns corresponding to the the truth, as shown in Table 1.

Table 1: Two-Class Contingency Matrix.

[Contingency Matrix Actual Class: 1 Actual Class: 2

Labeled Class: 1 TP FP
Labeled Class: 2 FN TN

]

13



Here, class 1 is the so-called positive or target class, and class 2 the negative; hence,

TP or the true positive count is how many exemplars from class 1 were correctly labeled,

and FN or the false negative count is how many were not, etc. [10, pp. 69-71].

Estimates of class-conditional probabilities may be formed by dividing each element

of a class-specific column in the contingency matrix by the total number of classified

exemplars from that class. With M1 and M2 exemplars from Classes 1 and 2,

respectively, undergoing classification, we may estimate the class-conditional probabilities

from Table 1, as shown in Table 2.

Table 2: Two-Class Confusion Matrix.




Confusion Matrix Actual Class: 1 Actual Class: 2

Labeled Class: 1
TP

M1

FP

M2

Labeled Class: 2
FN

M1

TN

M2




The result is a transpose stochastic confusion matrix, such that the sum of each

column is one. It is worth mentioning that some authors prefer the proper stochastic

presentation, but for the purposes of this thesis, the transpose stochastic is more

convenient [6, pp. 8-9]. Also, the term “confusion matrix” sometimes means the

contingency matrix denoted above, and a normalized form of the contingency matrix as

illustrated above (that which we term a confusion matrix) may be specified as a “confusion

rate matrix” or “confusion ratio matrix” to avoid confusion with the non-normalized

form [8, p. 3], [9, p. 2]. Due to its transpose stochastic nature, the information contained in

a 2 × 2 confusion matrix of this type may be presented as a coordinate pair comprised of

one entry from each column, which may then be plotted on a unit square [30, pp. 26-28].
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Assumption 2 (Acceptable Class-Conditional Probability Estimates). Without regard to

the method of obtaining an estimate Q̂
A

of the conditional probability matrix QA for a

given classification system A, assume that adequate estimation procedures have occurred,

such that for all practical purposes, considering Q̂
A

approximately equal to the matrix

E[QA ] of expected values of the elements of Q̂
A

results in no appreciable error; i.e., we

may substitute E[QA ] ≈ Q̂
A

whenever it is convenient to do so.

Definition 18 (ROC Manifold, ROC Curve). Given an n-class classification problem, the

convex hull of a continuous collection of ROC vectors estimates plotted in

(n2 − n)-dimensional space is often termed a ROC curve (for a two-class scenario) or a

ROC manifold [30]. The ROC Convex Hull is abbreviated ROCCH.

If constructing the ROCCH was simple, then comparing only classification systems

whose points lie on hull might save time, since no points within the hull interior could

possibly represent classification systems superior to those on the hull under any

circumstances [24], [30]. Such considerations would reduce the number of classification

systems to compare and contrast; however, since the simplicity of ROCCH calculation, and

thus the amount of time to be possibly saved, is questionable, the method of comparison

would seem to be far more important than saving time during such a comparison,

depending, of course, on the possible applications of the classification system. Except for

time-saving purposes, such geometrical concepts have limited utility under

decision-theoretical constructs, yet the ROCCH, especially in its binary form as the ROC

curve, has played a huge role in ROC analysis for many years, and are therefor worthy of

mention; however, they are not actually necessary considerations within the framework of

risk calculation; therefore, this thesis will refer to them only as auxiliary concepts.
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Definition 19 (Cost Matrix). A cost matrix given by [C]ij = ci|j is an n × n matrix of

real numbers representing costs or losses ci|j specific to events
(

e ∈ A ♮
[
{ℓi}

] ∣∣∣ e ∈ Ej

)
,

i.e., classification system A assigns label ℓi to an elementary event e when it is actually

an element of class Ej, whose class-conditional probability holds the exact same

(i, j)-position in the conditional probability matrix
[
Q

A

]
ij

= qi|j

(
A

)
. These costs may be

positive or negative, but most often, the sum of off-diagonal entries in any column is greater

than the diagonal entry itself, indicating that it is better (i.e., less costly) to classify

something as what it actually is rather than anything else [5, pp. 24-25]. This matrix may

also be called a “payoff” matrix, so its meaning is almost completely subjective [6, p. 16].

One common form is the so-called “zero-one” transpose stochastic cost matrix, with all

zeroes on the diagonal and each column summing to one; however, it is not necessary to

restrict the cost matrix to such a form [5, p. 26], [32, p. 7].

Assumption 3 (Fixed Costs). All elements of a given cost matrix C are fixed.

This is a necessary assumption, because costs often are the result of human reasoning,

which is very unpredictable; therefore, it is easier to simply choose different possible cost

regimes and perform risk calculations under each scenario.

Assumption 4 (Independence of Class-Conditional Costs and Probabilities). Given an

n-class classification system A and any index pairs (i, j), i, j = 1, . . . , n and (h, k),

h, k = 1, . . . , n, the set
{

qi|j(A), ch|k

}
consisting of any class-conditional probability

qi|j(A), and any cost ch|k, is independent.

Since costs are subjectively defined, it may be possible to envision a scenario where

the likelihood of making a particular type of classification decision has a direct impact on

the cost of such decision; however, it should therefore also be possible to define scenarios
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where costs do not change as estimates of ROC information change.

Definition 20 (Prevalence Matrix). Given an set
{
pj

}n

j= 1
of class prevalences for a

classification system A, the prevalence matrix P is an n × n stochastic matrix with each

row the same ordered n-tuple pT consisting of the class prevalences
{
pj

}n

j = 1
:

p ≡




p1

...

p n




n×1

=⇒ P =




pT

...

pT




n×n

=




p1 . . . p n

...

p1 . . . p n




n×n

(6)

Assumption 5 (Independence of Class Prevalence and Class-Conditional Costs). Given an

n-class classification system A, any index pair (i, j), i, j = 1, . . . , n, and any index

k = 1, . . . , n, the set
{
ci|j, pk

}
consisting of any cost ci|j and any prior class probability

pk, is independent.

Since the definition of cost is purely subjective, it is certainly possible that the

individual costs of making classification decisions may be independent of the class

prevalences. For example, in signal detection, this might be like assuming that it is always

equally costly to assume an instance of electromagnetic radiation contains noise alone,

given that it actually contains a signal, since the binary nature of the setup seems to imply

that there is potentially valuable information contained in any type of signal.

Definition 21 (Matrix Hadamard Product). Given any two matrices U and V of the

same size, the binary Hadamard Matrix Operator ⊙ forms a new matrix U ⊙ V of the

same size. A typical element of the resultant matrix is given by:

[U ⊙ V]ij = ui j vi j = vi j ui j = [V ⊙ U]ij (7)
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Definition 22 (Frobenius Dot Product). Given any two matrices U and V of size s × r,

the Matrix Dot Product Operator 〈 , 〉F performs the following reflexive binary operation:

〈U,V〉F =
s∑

i = 1

(
r∑

j = 1

vi j ui j

)
=

r∑

j = 1

(
s∑

i = 1

ui j vi j

)
= 〈V,U〉F (8)

which is simply the sum of all elements of the Hadamard Matrix Product U ⊙ V.

Definition 23 (Standard m-Simplex). Given any positive integer m, along with any

ordered m-tuple p ∈ [0, 1]m of non-negative real variables pj, j = 1, 2, 3, . . . , m, the

standard m-simplex ∆m is the set [3, p. 568], [20, pp. 149-150]:

∆m =

{
p ∈ [0, 1]m :

m∑

j = 1

pj ≤ 1

}
(9)

Figure 1 shows an example of how , for a three-class scenario, a two-dimensional

prevalence vector p =
(
p1, p2

)
whose coordinates sum to a number less than 1 may be

drawn from ∆2 . Note that the unspecified value of p3 is found from the conjunctive

equation
3∑

j = 1

pj = 1, as illustrated in Figure 2, where this point lies on the tilted surface of

a standard 3-simplex.

Definition 24 ( s × r Random Matrix). Given an s × r matrix B =
[
Bij

]
of event sets

and an s × r matrix X of functions xij defined on Bij, respectively, X is an s × r matrix

of random variables, or a random matrix, when the codomain of each function

xij : B ij −→ R is the set R of real numbers [33, p. 73].

There is no stipulation as to what type of event set a random variable may be defined

upon; therefore, any or all of the event sets in a matrix B of event sets may be either
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Figure 2: ∆3 ≡

{
p ∈ [0, 1]3 :

3∑

j = 1

pj ≤ 1

}
.

discrete or continuous. Given an n-class classification system A and the corresponding

real-valued matrices Q
A
, C, and P introduced in Definitions 17, 19, and 20 above,

respectively, note that each is a random matrix defined on a matrix of event sets.
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With regard to the matrices Q
A

and P, it is also evident that there are exactly n

random variables that are functions of only (n − 1) of the random variables inhabiting the

same column or row, due to the respective transpose stochastic and stochastic natures of

these matrices. For example, since the prevalence matrix P is simply the same random

vector p arrayed next to itself n times, the definitions of all n of these functionally

dependent variables are exactly the same; similarly, of the remaining (n2 − n) random

variables that could be non-constant, there are actually only (n − 1) unique random

variables. It will become apparent later why this notation is used; it is sufficient for now to

notice that any joint distribution defined for P will be a function of the same (n − 1)

unique random variables that populate each of its rows, as will any joint distribution

defined for a given column of Q
A
. The respective stochastic and transpose stochastic

natures of these matrices means that an entire row or column vector of random variables

will be jointly distributed over a standard (n − 1)-simplex (see Definition 23 above), since,

for example, the nth entry pj randomly drawn in each row vector p in the prevalence

matrix P is a function pn = 1 −

n−1∑

j = 1

pj of the other (n − 1) random variables in the row

which are randomly drawn before it.

1.3 Problem Statement

Before proceeding further, let us motivate the need for the preceding definitions by

means of the following situation. Imagine a stockbroker analyzing the contents of a certain

client’s portfolio, implementing an algorithm that classifies stocks as either buy, sell, or

hold. Although unknown to the broker or the directors of the corporations whose stocks she

analyzes, there are a set of seemingly insignificant factors that, when occurring
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simultaneously, create severe danger of financial ruin for many of these corporations. Her

classification system was created to detect just such problems, however, and it reports that

85% of stocks in this particular portfolio are sell stocks—i.e., stocks that ought to be sold

immediately. Since the broker has never seen numbers for the sell class greater than 10%,

she begins to question the results, and therefore does not immediately sell those stocks.

Time ticks by, and it becomes more readily apparent to the corporations and the broker

that the stocks are highly over-valued, and the window of opportunity to sell with minimal

loss shrinks away overnight.

If the broker in this case had been informed beforehand that the classification system

she used had been selected and tuned specifically to the cost structure dictated by her

management, and that the distribution of stock class prevalences provided for the

possibility of unknown factors causing a change in stock class prevalences, she might have

had more confidence in the classification system, and then acted immediately to avoid

losing more money for her client, because her risk was already minimized by acting on the

results of the classification system.

Although the scenario above might be unrealistic, there are many classification

situations which entail potentially much greater costs, e.g., from the loss of life (military

applications are just one). However, many popular methods of comparing classification

systems to one another do not consider the whole picture of risk—i.e., the costs and class

prevalences in addition to an estimate of the class-conditional probabilities. In addition to

these oversights, and due to the fact that volume under a ROC surface (VUS) in a

three-class case would have six dimensions, visualization of geometric surfaces becomes

impossible, so ignoring more than just one of the entries per column of a conditional
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probability matrix estimate is also sometimes chosen as an alternative [21]. Most attempts

to generalize geometric concepts to the general n-class case choose to ignore either the class

prevalences or the costs [7], [9], [35]. If Assumptions 1, 2, 3, 4, and 5 are relatively safe

assumptions to make, then the concept of risk offers the opportunity a much more robust

form of ROC analysis; i.e., one which considers many more of the characteristics of the

operating environment in which the receiver of information resides.
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II. Review of Related ROC Analysis Topics

The monograph by Egan serves as a starting point for modern binary ROC analysis. It

contains much of the terminology and geometry still in use today, as well as a framework

for risk calculations [6, p. 16]. Based on his work, for a given classification system A and

accompanying conditional probability, cost, and prevalence matrices Q
A
, C, and P as

given in Definitions 9, 17, 19, and 20 of Chapter I, respectively, we define the risk R(A) of

a classification system A (suppressing notational dependence on A) as :

R =
〈
Q ,

(
C ⊙ P

)〉
F

(10)

with Matrix Hadamard Product ⊙ and Frobenius Dot Product 〈 , 〉F as defined in

Chapter I, Definitions 21 and 22, respectively. Egan notes that (10) gives the expected cost

over a sufficiently large number of trials; therefore, from this point onward, we shall

assume, as in Chapter I, Assumption 2, that such is the case [6, pp. 16-17].

2.1 Two-Class ROC Analysis

Assume the following notation of a transpose stochastic confusion matrix for some

binary classification system A (again, suppressing notational dependence on A):




q̂ 1|1 q̂ 1|2

q̂ 2|1 q̂ 2|2


 =




tpr fpr

fnr tnr


 (11)

where class 1 assumes the role of the so-called positive or target class, and class 2 is the
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negative or non-target class, thereby leading to the abbreviations for true positive rate

(tpr), false negative rate (fnr), false positive rate (fpr), and true negative rate (tnr) in

common use today [10], [32]. Since this matrix is transpose stochastic, its information may

be represented by only one entry from each column. Although there are four possible ways

to do this, the common way is to plot (fpr, tpr) as in Figure 3, so that the coordinate

representation of a perfect classifier is at (0, 1). In this coordinate system, maximal area

beneath the lines connecting a plotted point for a given classification system to the corners

(0, 0) and (1, 1) is seen as desirable [8, pp. 108-110].

Based on this geometrical frame of reference, one of the most popular means of

evaluating classification system effectiveness is by the Area Under the ROC Curve (AUC)

performance measure, which calculates geometrically the area under the convex hull of a

collection of ROC vector estimates plotted in this way to represent a family of binary

classification systems [10], [13], [26]. Instead of analyzing collections of ROC vectors,

consider the case with just one plotted ROC vector [8, pp. 108-110], as in Figure 3.

0 fpr 1
0

tpr

1
ROC Curve for One ROC Point Estimate

q̂2|1

q̂1|1

Figure 3: ROC Curve for One ROC Point Estimate.

The area under this ROC curve is simply the sum of a square and two triangles:
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AUC = (1 − fpr)(tpr) +
(fpr)(tpr)

2
+

(1 − fpr)(1 − tpr)

2

=

[
2(1 − fpr)(tpr)

]
+

[
(fpr)(tpr)

]
+

[
(1 − fpr)(1 − tpr)

]

2

=
2
[
tpr − (fpr)(tpr)

]
+ (fpr)(tpr) + 1 − tpr − fpr + (tpr)(fpr)

2

=
2(tpr) − 2(fpr)(tpr) + (fpr)(tpr) + 1 − tpr − fpr + (tpr)(fpr)

2

=
tpr + (1 − fpr)

2

=
tpr + tnr

2

(12)

where the last observation is made possible by the conjunctive equation fpr + tnr = 1

pertaining to the left columns in (11) above. Now, if we assume equal class prevalences

M1 = M = M2 we may write:

AUC =
tpr + tnr

2

≡
TP

M1
+ TN

M2

2

=
TP

M
+ TN

M

2

=
TP + TN

2M

=
TP + TN

M1 + M2

≡ Accuracy

(13)

Accuracy is related to risk through the AUC, as seen when we calculate the

approximate risk R ≈
〈
Q̂ ,

(
C ⊙ P

)〉
F

(per Assumption 2, Chapter I) indicated by (10)

for a zero-one cost matrix C =
[

0 1
1 0

]
under equal class prevalences:
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R ≈
〈
Q̂ ,

(
C ⊙ P

)〉
F

=

〈[
tpr fpr

fnr tnr

]
,

([
0 1

1 0

]
⊙

[
1
2

1
2

1
2

1
2

])〉

F

=

〈[
tpr fpr

fnr tnr

]
,

[
0 1

2
1
2

0

]〉

F

=
(0 + fpr) + (fnr + 0)

2

=
(1 − tnr) + (1 − tpr)

2

= 1 −
tpr + tnr

2

= 1 − AUC

(14)

where the last relation again is made possible by the conjunctive equations from (11)

above; therefore, by (12) above, the risk R for a zero-one cost matrix and equal class

prevalences is simply (1 − Accuracy) under the same assumptions, and (1 − AUC) in

general for a ROC curve with only one point. It is interesting to note that if the coordinate

pair used to represent the information of the transpose stochastic matrices in (11) were

(fpr, fnr) instead of (fpr, tpr) , the calculation in (14) would yield R ≈ AUC.

Neither the AUC nor Accuracy consider costs, but unlike Accuracy, the AUC also

does not consider class prevalences in its calculation, and so the AUCs for two very

different classification systems may be equal, as shown in Figure 4.

There is some merit to the idea that the conventional formula for Accuracy considers

class prevalences, but it still ignores the costs, and for that reason is incomplete as a

measure of risk [10], [14], [19], [25]. It is also not robust to changes in class prevalences

when extended to a classification system with more than 2 classes. There are quite a few

other performance measures related to Accuracy or the AUC which we shall not mention,
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Figure 4: Two ROC Curves with Equal AUC.

due to the similarity of their weaknesses to changes in class prevalences and differing costs.

Proceeding in this manner, it becomes apparent that any other ROC analysis calculation

based on Accuracy or the AUC is equivalent to a risk calculation with certain restrictions

on the values of the cost and prior information.

In general, it appears that none of the binary ROC analysis methods in popular use

today truly utilize the significant Bayesian inputs of costs and prior probabilities.

2.2 Multi-Class ROC Analysis

Extending classical ROC analysis beyond the realm of binary classification is difficult.

Some authors have proposed using only one entry per column of a 3 × 3 transpose

stochastic confusion matrix, eliminating most of the ROC information, and explicitly

considering neither costs nor class prevalences in their calculations [21, pp. 80-82], [22, p.

3441] [34, p. 4]. More recent approaches consider either the costs or the priors as one of

the parameters in the threshold set, ignoring the effect of the other, or suggest plotting

different curves for each pair of classes as done in binary ROC analysis [9], [12], [36].
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Due to the conjunctive equations accompanying any conditional probability matrix,

the Volume Under the Surface (VUS) for an n-class scenario is only a true extension of the

AUC when it is (n2 − n)-dimensional, however, some authors, in order to produce visible

surfaces, plot only a 3-dimensional surface for a 3-class system [4], [21], [22]. Some, who

realize the weakness such a scheme entails, allude to the calculation of risk; however, the

calculation is not performed, because, for example, the need to assume unknown costs is

deemed important. In general, breaching Assumptions 1, 2, 3, 4, and 5 from Chapter I is

never mentioned as a cause for not calculating the risk [8], [9].

2.3 Need for a ROC Risk Functional

The world of classical ROC analysis seems to be stuck unnecessarily in a frame of

reference that considers geometrical analyses as the gold standard of ROC analysis

methods, when in fact, if Assumptions 1, 2, 3, 4, and 5 from Chapter I can be met, the

comparison of classification systems by risk comparison is not simpler and more

comprehensive. In addition, risk-based comparison of classification systems falls closer to

the reach of the ordinary decision-maker, who is usually not involved in obtaining estimates

of class-conditional probabilities, but usually is responsible for defining costs and may even

have some knowledge of class prevalence distributions. When risk-based comparisons of

classification systems are implemented, the result is much simpler, as well as more

considerate of the crucial role of both costs and class prevalences in ROC analysis [32].
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III. Development and Definition of the ROC Risk Functional

The ROC Functional fA suggested in [31] and [32] for a family A of classification systems

is a ROC analysis method which minimizes risk. Additionally, it was proposed in [32] to

allow the Hadamard Product γ̂γγ =
(
c ⊙ p

)
of vectors of costs and class prevalences,

constructed in a particular way, to vary over a range Γ = {γγγ : γγγ = c ⊙ p}, along with

restrictions on cost. This Robust Functional implicitly incorporated Assumptions 1, 2, and

4 from Chapter I, but did not incorporate Assumptions 3 and 5 from that Chapter, which

made the problem more difficult. The equation was written as:

R
(
fA, Γ

)
= min

q∈Q

∫

Γ

〈q, γ̂γγ〉W(γγγ)dγγγ (15)

where Q is a collection Q = {q : q ∈ Q} of ROC vectors corresponding to the family A

of classification systems and W(γγγ) is a joint weighting function, of the cost-prior

Hadamard Product vector γ̂γγ = c ⊙ p̂, cast either as a probability density function or a

belief function [32, p. 6].

In addition to the implicit incorporation of Assumptions 1, 2, and 4 from Chapter I, if

we also incorporate Assumptions 3 and 5 from the same Chapter, we may fashion the

distributions of costs and priors independently from one another by making over q, c, and

p in (15) above to be the random matrices Q
A
, C, and P (see Definitions 24, 17, 19, and

20 from Chapter I). Without explicitly denoting dependence on the classification system

A, we define marginal weighting functions WQ(Q), WC(C), and WP(P). Since these

marginal distributions are defined for sets of random variables assumed independent from

one another, they satisfy the separability condition [33, p. 245]:
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WQ,C,P(Q,C,P) = WQ(Q) WC(C) WP(P)

We shall now examine possible joint probability density functions WP(P) on the

priors such that the constraints of the conjunctive equation
n∑

j = 1

pj = 1 are met.

Note that (15) simply calculates Bayes risk, or the expected value of Equation (10),

Chapter II. Without explicitly denoting dependence on the classification system A or

functional dependence on the variables in the matrices Q
A
, C, and P, we may write:

E(R) ≡ E

[〈
Q ,

(
C ⊙ P

)〉
F

]

=

∫ ∫ ∫ 〈
Q, (C ⊙ P)

〉
F

WQ,C,P dQdCdP

=

∫ ∫ ∫ n∑

i = 1

(
n∑

j = 1

[
q i | j

(
c i | j pj

)]
)

WQ,C,P dQdCdP

=
n∑

i = 1

(
n∑

j = 1

[ ∫ ∫ ∫
q i | j c i | j pj

(
WQWCWP dQ

)
dCdP

])

=
n∑

i = 1

(
n∑

j = 1

[ ∫
pj WP

∫
c i | jWC

∫
q i | j WQ dQdCdP

])

=
n∑

i = 1

(
n∑

j = 1

[( ∫
pj WP dP

)( ∫
c i | jWC dC

) (∫
q i | j WQ dQ

)])

=
n∑

i = 1

(
n∑

j = 1

[(
E

[
pj

]) (
E

[
c i | j

]) (
E

[
q i | j

])])

=
n∑

i = 1

[
n∑

j = 1

(
E

[
q i | j

] [
E

[
c i | j

]
E

[
pj

]] )]

=

〈
E

[
Q

]
,
(

E
[
C

]
⊙ E

[
P

] ) 〉

F

≈
〈

Q̂ , C ⊙ E [P]
〉

F

(16)
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where the boldface expected value E
[
·
]

denotes a matrix
[
E(·)

]
ij

of expected values, and

where we have introduced the notation of integration with respect to a matrix, such that

∫
[ · ] dX denotes the multiple integration operator:

∫
. . . . . .

∫
. . .

∫ ∫
[ · ] dx11 dx12 . . . dx1r . . . . . . dxsr

with respect to all of the variables in the matrix X of size s× r, such that dX denotes the

product of all differential elements dxij of variables in X, ∀ i ∈ {1, 2, 3, . . . , s} and

j ∈ {1, 2, 3, . . . , r}. Note that without Assumptions 1, 2, 3, 4, and 5 from Chapter I, we

could not perform this simple dot product calculation for Bayes risk [33, p. 233-246].

3.1 Definition of the ROC Risk Functional

Given a family AΘ = {Aθ : θ ∈ Θ} of n-class classification systems of form

Aθ : E −→ L over a threshold set Θ, with common cost and prevalence matrices C and P

and a collection
{
Q

Aθ
: θ ∈ Θ

}
of conditional probability matrices, as defined in Chapter

I, Definitions 11, 10, 19, 20, and 17, respectively, define the ROC Risk Functional (RRF) as

a threshold parameter θ ∈ Θ such that the classification system Aθ minimizes Bayes risk

over the family AΘ of classification systems:

arg min
Aθ∈AΘ

{
E

[
RAθ

]}
≡ arg min

Aθ∈AΘ

{
E

[ 〈
Q

Aθ
, (C ⊙ P)

〉
F

]}

≈ arg min
Aθ∈AΘ

{〈
Q̂

Aθ
, C ⊙ E [P]

〉
F

} (17)

As a result of Assumptions 1, 2, 3, 4, and 5 from Chapter I, expected values for

elements of the cost, prevalence, and conditional probability matrices may all be analyzed
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and estimated independently of elements of any other matrix appearing in (17), prior to

using them in calculation of Bayes’ risk when employing the RRF.

We now consider the effect on E [P] of varying our assumptions on P. These

assumptions may take many different forms. For example, we may simply consider that we

already have an acceptable estimate of P, and treat it as a constant, bringing us back to a

form like that of Equation (10), Chapter II. We may also populate its rows with the

transpose mean vector of a joint statistical distribution, such as a joint uniform distribution

representing no knowledge of prior probabilities, or some other jointly continuous

fixed-support probability distribution function, such as a multivariate Beta distribution.

Finally, we may simply impose a joint weighting based on expert knowledge and belief

(a.k.a., a belief function, which is actually a more general type of weighting than a

probability distribution function, with potentially greater utility for actual end-users of

classification systems [28, pp. 38-39]. In the latter case, we do not end up with a classical

risk, but rather a fuzzy risk. Since the case where all random variables in the prevalence

matrix P are constants is a matter of simple algebra, we shall examine a small sampling of

more interesting possibilities.

3.2 Completely Unknown Class Prevalences

As noted in Chapter I, for an n-class classification system, exactly (n − 1) of the class

prevalences are distributed over a standard (n − 1)-simplex, and the remaining class

prevalence is found by solving the conjunctive equation inherent in each row of the

stochastic matrix P of class prevalences. Observing Theorem 2, Appendix A:
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m! =
1

∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
. . .

∫ 1−
∑m−1

j = 1 (pj)

0 dpm . . . dp3 dp2 dp1

(18)

we see the integral in the denominator of (18) is simply over the standard m-simplex

∆m ⊂ [0, 1]m (see Definition 23, Chapter I). Apply this observation and (18) to the

standard simplex ∆n−1 from which the first (n − 1) class prevalences are drawn, yielding:

∫

∆n−1

dp n−1 . . . dp1 =

∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0

. . .

∫ 1−
∑n−2

j = 1 (pj)

0

dp n−1 . . . dp3 dp2 dp1

=
1

(n − 1)!

(19)

Assuming nothing whatsoever is known about the prior probabilities, a jointly

continuous uniform probability density function WP,uniform(p1, . . . , p n−1) of (n − 1) class

prevalences over the standard (n − 1)-simplex, satisfying

∫
∆n−1

WP,uniform

(
p1, . . . , p n−1

)
dp n−1 . . . dp1 = 1 is then given by [3, p. 568]:

WP,uniform

(
p1, . . . , p n−1

)
=





(n − 1)! ,
(
p1, . . . , p n−1

)
∈ ∆n−1

0, otherwise

(20)

If we consider the quantity E [P] appearing in (17) above to be the matrix of

expected values whose typical element is:

[ ∫

∆n−1

pij WPj,uniform

(
p 1j, . . . , p n−1,j

)
dp n−1,j . . . dp 1j

]

ij

we may simplify our evaluation of these integrals by recalling that each row is identical and
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that all entries in a given row i, save pin =

(
1 −

n−1∑

j = 1

pij

)
, are the class prevalences

{
pij

}n−1

j=1
, for all rows i = 1, 2, 3 . . . , n. Also, since the rows are identical, there is no need

to keep the subscript i when referring to a prior probability pj for class Ej.

It is crucial to state here that even though we use the words first and last to describe

the class prevalences, the order in which the so-called first (n − 1) class prevalences are

randomly drawn from their joint distribution has nothing to do with the ordering of the

index set Λ by which we link them to elements of the label set.

Since pn = 1 −
n−1∑

j = 1

pj is a function of the (n − 1) class prevalences whose joint

distribution is WP,uniform(p1, . . . , pn−1), we may use the weighting in (20) to calculate an

expected value E
(
p n

)
, using some of the equation patterns seen in the proof of Theorem 2,

Appendix A:

E
(
pn

)
= E

(
1 −

n−1∑

j = 1

pj

)

=

∫

∆n−1

(
1 −

n−1∑

j = 1

pj

)
WP

(
p1 . . . p n−1

)
dp n−1, . . . , dp1

=

∫

∆n−1

(
1 −

n−1∑

j = 1

pj

)
(n − 1)! dp n−1 . . . dp1

= (n − 1)!

∫

∆n−1

(
1 −

n−1∑

j = 1

pj

)
dp n−1 . . . dp1

= (n − 1)!

∫ 1

0

∫ 1−p1

0

. . .

∫ 1−
∑n−2

j=1 (pj)

0

(
1 −

n−1∑

j=1

pj

)
dpn−1 . . . dp2 dp1

= (n − 1)!

(
1

n!

)
, by (28) and (29), Theorem 2 proof, Appendix A

=
1

n

(21)
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We may calculate expected values for the other (n − 1) class prevalences in a row by

means of Corollary 1, Appendix A, which is known to be true for positive integers less than

48 (i.e., for most practical classification purposes):

(m + 1)! =
1

∫ 1

0

∫ 1−p1

0

∫ 1−p1−p2

0
. . .

∫ ∑m−1
i = 1 (pi)

0
pj dpm . . . dp3 dp2 dp1

≡
1∫

∆m
pj dppp

, ∀ j = 1, 2, 3, . . . , m

(22)

Apply (22) to each of the expected values E
(
pj

)
, j = 1, . . . , n − 1:

E
(
pj

)
=

∫

∆n−1

pj WP

(
p1, . . . , p n−1

)
dp n−1 . . . dp1

=

∫

∆n−1

pj (n − 1)! dp n−1 . . . dp1

= (n − 1)!

∫

∆n−1

pj dp n−1 . . . dp1

= (n − 1)!

(
1

n!

)

=
1

n
, ∀ j = 1, . . . , n − 1

(23)

so by (21), each entry in the n × n matrix E
[
PA

]
is exactly 1

n
; therefore, if we set all

class prevalences equal to begin with, the resultant expected value matrix is the same as

when we assume an underlying multivariate uniform distribution over ∆n−1.

3.3 Limited Knowledge of Class Prevalences

Probability density functions, such as the multivariate uniform and Beta

distributions, are only a specific kind of “weighting” function WP to be used in evidential

or probabilistic reasoning regarding the class prevalences, since the classical structure of
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probability is only a specific instance of an infinite number of ways to approach the so-called

“doctrine of chances” [2], [28]. This is the reason we have chosen to denote the weighting

function as WP instead of the usual symbol fP for a marginal probability density function

of the class prevalences. Even though we leave the framework open for expansion, we will

only consider one additional classical distribution—a multivariate general Beta.

The marginal versions of a general Beta distribution are very flexible and may even

be made to approximate normal distributions over limited support intervals. The standard

univariate Beta distribution has support on [0, 1], and thus has a set of two parameters (for

shape), but the general form has four parameters, because it includes two parameters Slower

and Supper giving the bounds of the support interval [lower, upper] ⊂ R over which it is

defined [15, p. 210]. In this thesis we shall always define the lower support bound to be

lower = 0, effectively reducing the number of parameters to three; further, we shall also

consider only those marginal Beta distributions that have the potential to approximate a

normal distribution with a mean of
(

upper

2

)
over their support intervals; i.e., those

symmetric about the midpoint of their support. This means the two shape parameters are

equal, so we have reduced the total number of possibly unique parameters to two—one for

shape, and one for support. We shall denote this special case of the general Beta

distribution as β(t, S), where t is the value of the common shape parameter, and S is the

upper bound of the support interval [0, S]. In the case where a joint probability density

function WP,β is defined over a standard simplex ∆m, we shall indicate such joint support

by the notation β(t, ∆m), where t ∈ (0,∞)m is a vector of the common shape parameters

used in the symmetric marginal probability density functions.

The support parameter of the marginal distributions of the first (n − 1) class

36



prevalences randomly drawn over an (n − 1)-simplex is a function of all prevalences

previously drawn. In fact, it is because of this that expected value calculations for any

function f
(
p1, . . . , pn−1

)
may then be performed by means of the operator:

∫

∆n−1

( · ) WP dp n−1 . . . dp1 =

∫ 1

0

. . .

∫ 1−
∑n−2

j = 1(pj)

0

( · ) WP

(
p1, . . . , p n−1

)
dp n−1 . . . dp1

=

∫ 1

0

WP,1 . . .

∫ 1−
∑n−2

j = 1(pj)

0

( · )

[
WP,n−1 dp n−1

]
. . . dp1

(24)

by decomposing the joint distribution WP

(
p1, . . . , p n−1

)
into a form allowing elimination

of one variable at a time, working from the inside of the integral toward the outside:

WP

(
p1, . . . , p n−1

)
=

[
WP,1

(
p1

)] [
WP,2

(
p1, p2

)]
. . .

[
WP,n−1

(
p1, . . . , p n−1

)]
(25)

Considering a 3-class scenario, we attempt to approximate a bivariate normal

distribution of the first two class prevalences randomly drawn from the standard 2-simplex.

Figure 5 depicts a bivariate β
(
[5, 290], ∆2

)
probability distribution function

WP,β,(5,290),∆2

(
p1, p2

)
of two class prevalences over the standard 2-simplex. The values of

the common shape parameters for the marginal probability density functions were chosen

after examining Figures 6 and 7.
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IV. Application of Results to Actual Data

The Fisher Iris Data is a well-known data set consisting of four measurements (in

millimeters) of various physical attributes for three subspecies of iris flowers—namely, Iris

Setosa, Iris Versicolor, and Iris Virginica. There are 50 such sets of measurements per

species, allowing for great flexibility when varying class distributions such that the data set

is always of significant size. Principal components analysis (PCA) of the data reveals that

the first two principal components account for about 98% of the variance in the data;

therefore, we sped up computation by only using the component scores from these two

components. The PCA scores for these two components are shown in Figure 8.
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Figure 8: First Two Principal Component Scores, Fisher Iris Data.

We used Probabilistic Neural Net (PNN) classifiers trained with data distributed
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amongst the classes according to a set of three positive numbers summing to 1, the first

two of which were drawn from a specific bivariate distribution assumed to exist over the

standard 2-simplex, rounding determining the actual prevalence, which may not be exactly

equal to the goal prevalence actually drawn due to the fact that one cannot classify a

partial exemplar. We cast Iris Setosa as Class 1, Iris Versicolor as Class 2, Iris Virginica as

Class 3, applying the uniform and symmetric Beta distributions examined in Chapter III,

Sections 3.2 and 3.3 to the PCA score data to test the validity of Assumption 1 from

Chapter I, while comparing the performance of the ROC Risk Functional (RRF) to

Accuracy.

To test the validity of Assumption 1 from Chapter I, we used the non-parametric

Kendall’s Tau Correlation Coefficient statistical test, with a null hypothesis of no

dependence between a class-conditional probability estimate q̂i|j and the prevalence pj of

the class Ej upon which it is conditioned [11, pp. 404-405]. Note that we assumed it

sufficient to test only between a conditional probability estimate q̂i|j

(
Aθ

)
and the

prevalence pj of the class upon which it is conditioned, since the class prevalence pj

actually appears in the formulas for qi|j, ∀ i = 1, . . . , n (see Definition 16, Chapter I).

Under this assumption, nine separate Kendall’s Tau tests were performed after each set of

37 replicates, testing for independence between each of the 9 sets of 37 class-conditional

probabilities and a similar population of actual class prevalences for the class upon which

they are conditioned, reporting the mean absolute value of Kendall’s Tau Correlation

Coefficients and corresponding mean p-values from those tests in a pair of 9 × 9 matrices.

A Monte Carlo simulated power analysis algorithm provided a 99% confidence

interval of (0.8083, 0.8282) for the power of a test with 37 sample points and an
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alternative hypothesis that the absolute value of Kendall’s Tau Correlation Coefficient was

as great as 0.4 and considering p-values of less than 0.15 statistically significant.

For both the uniform and beta scenarios, we trained a PNN classifier on the subsets

of the data set derived by drawing the first two class prevalences randomly from the

appropriate bivariate distribution until its randomly determined membership count was

met, maximizing the overall size of the training data set according to the constraints of the

randomly determined prevalences. We disallowed instances of zero class membership for

any class, since Assumption 1 from Chapter I only applies to non-zero class prevalences.

We validated the classifiers via the Lachenbruch holdout method, which yields a very

precise estimate of Error, called the “Actual Error Rrate” (AER), where

Error ≡ (1 − Accuracy) [1], [17, p. 4]. In this method, the classifier is trained on all but

one exemplar at a time and then that exemplar is classified to populate the contingency

matrix. After the contingency matrix is completely populated in this way by repeating the

Lachenbruch holdout procedure for each exemplar from a randomly chosen set of training

data, the transpose stochastic confusion matrix was formed; then, the entire process listed

above was repeated a total of 37 times, for both the uniform and beta scenarios.

A PNN uses a continuous threshold parameter called the spread. This is the common

standard deviation of the small multivariate normal probability density functions that are

constructed with each training exemplar as the mean vector, then summed and normalized

to form the “Parzen Window” probability density functions for each class during

training [5, pp. 164-166]. We standardized the data before training and validation, enabling

us to vary the spread parameter for the PNN from 0.001 to 1.001 with confidence of not

needing to go any larger with the spread [1]. If one sought to classify a new exemplar
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according to such a classifier, one would need to subtract the grand mean of the training

data and divide by its standard deviation to obtain a standardized form of the exemplar.

We performed a “spread study” by taking 10 equally-spaced steps of 0.1 between

0.001 and 1.001, performing the 37 replications mentioned above at each point for both

the uniform and beta scenarios. We found the value of the spread parameter such that a

classification system based on that parameter minimized Bayes risk under a certain

assumed cost regime and class prevalence distribution. The conditional probability matrix

estimate used for a classification system based on a particular spread parameter and class

prevalence distribution was the mean of the 37 confusion matrices produced by the

experiment at that particular spread parameter, and for that particular distribution of class

prevalences. We calculated Bayes risk under two different fixed-cost regimes for each of the

prevalence distribution scenarios, but when the assumed distribution of prior probabilities

was held constant between risk calculations for different cost regimes, we used the same

conditional probability matrix estimate for both calculations. The two cost regimes used

are shown in Tables 3 and 4.

Table 3: Cost Regime 1.

[Cost Regime 1 Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 0 5 5
Labeled Class: 2 1 0 1
Labeled Class: 3 1 1 0

]

Table 4: Cost Regime 2.

[Cost Regime 2 Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 1 10 2
Labeled Class: 2 2 1 2
Labeled Class: 3 2 10 1

]
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4.1 Uniform Distribution Scenario

As shown in Figures 9 and 10, spread parameter value θ = 0.301 minimized Bayes

Risk over two separate fixed cost scenarios. Figure 11 shows that this same value of the

spread also minimized the AER.
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Figure 9: Bayes Risks for Cost Regime 1 , Uniform Application.
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Figure 10: Bayes Risks for Cost Regime 2 , Uniform Application.
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Figure 11: Actual Error Rates, Uniform Application.

As we can see from the mean p-values and absolute correlations in Table 5,

Assumption 1 from Chapter I appears to have been violated in quite a few cases, especially

in the lower right-hand corner of the table, corresponding to classification decisions

involving the Iris Versicolor and Iris Virginica species. It should be noted that for the

uniform scenario, lower p-values and higher correlations appeared in the areas of Table 5

corresponding to these species, no matter how we rearranged the order of which species

were assigned to which class numbers. This may be related to the relative difficulty in

distinguishing between these two species, as illustrated in Figure 8 above.

Finally, it is worth noting that Accuracy-based analysis, wherein the goal is to

minimize the AER, yielded no different results than the RRF in this case.

45



Table 5: Mean Absolute Correlations and p-values, Uniform Application.




Correlations Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 0.32 0.32 0.07
Labeled Class: 2 0.29 0.64 0.52
Labeled Class: 3 0.08 0.47 0.57







p-values Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 0.20 0.09 0.78
Labeled Class: 2 0.21 0.00 0.09
Labeled Class: 3 0.75 0.09 0.00




4.2 Beta Distribution Scenario

As shown in Figures 12 and 13, spread parameter value θ = 0.201 minimized Bayes

Risk for Cost Regime 1, and a different spread parameter value θ = 0.401 minimized Bayes

Risk for Cost Regime 1. It is interesting to note, as displayed in Figure 14, that yet another

spread parameter value θ = 0.301, which was near the mean of the two parameters

minimizing risk under the two cost scenarios, minimized the AER.
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Figure 12: Bayes Risks for Cost Regime 1 , Beta Application.
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Figure 13: Bayes Risks for Cost Regime 2 , Beta Application.
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Figure 14: Actual Error Rates, Beta Application.

As we can see from the mean p-values and absolute correlations in Table 6,

Assumption 1 from Chapter I appears to hold quite well in this scenario. It is interesting to

note that the lowest correlations and highest p-values occurred in the (1, 3) and (1, 3)

positions of Table 6. This may be related to the fact that, as shown in Figure 8 above, the
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Classes 1 and 3, namely, Iris Setosa and Iris Virginica, are difficult to confuse.

Table 6: Mean Absolute Correlations and p-values, Beta Application.




Correlations Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 0.09 0.16 0.04
Labeled Class: 2 0.09 0.26 0.19
Labeled Class: 3 0.00 0.19 0.23







p-values Actual Class: 1 Actual Class: 2 Actual Class: 3

Labeled Class: 1 0.73 0.62 0.91
Labeled Class: 2 0.73 0.15 0.27
Labeled Class: 3 1.00 0.30 0.18




It should be noted here that if the manner of assigning class numbers to the species

varied at all from the arrangement listed at the beginning of this Chapter, certain p-values

began to be low and corresponding correlations high, similar to the case with the uniform

application. This may be related to the fact that we had unequal means for the classes in

the beta scenario, since the marginal probability distribution for the first class chosen

always had mean
(

1
2

)
; thus, when a species that was not as easy as Iris Setosa to classify

was chosen as Class 1, it tended to have a larger class prevalence, and thus more influence

over the training process.
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V. Conclusion and Research Suggestions

5.1 Summary of Application Results

With no knowledge of class prevalence distributions, persons training classifiers may

wish to assume a uniform distribution. However, as has been shown, Assumption 1 from

Chapter I may tend not to be met in this case, particularly if there are quite a few wrong

decisions being made by the classifier. The Kendall’s Tau test seems to be rather sensitive

to these mistakes, and the fact that a confusion matrix should (in the ideal case) have only

a few non-zero off-diagonal entries seems to create a situation with an excessive number of

ties. The relationship between the relative number of times a classifier makes a mistake and

does not seems to hold great power over these results; for example, there was one type of

classification mistake that was never made in any case over all of the random trials

performed, and so the correlation values for this element of the confusion matrix and the

prevalence of the actual class over which the element was normalized was always exactly

zero, with p-value 1. However, if just one mistake of a certain type occurred during

classifier validation, this often resulted in a rather high correlation and a rather low p-value

for the independence test for that particular class-conditional probability estimate.

Regardless of the fact that the Assumption 1 from Chapter I appears to have been

violated, there are many cases in which the basic assumptions of an applied multivariate

analysis technique may often be seriously violated, and yet the technique based upon these

assumptions is still very useful and informative [1]. Therefore, I would recommend not

eliminating risk-based comparison of classification systems until an investigation into such

matters can be made, or another practical method of calculating risk is found that does not
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require such strict independence assumptions (if indeed such a practical method exists).

It would also appear that a more informative class prevalence distribution than the

uniform tends to yield better results when testing Assumption 1 from Chapter I. The

method for training classifiers, wherein training data is randomly chosen according to an

assumed statistical or other distribution, may have applications for persons involved in the

development of classification systems, because it eliminates human bias and allows the

testing of said Assumption.

Based on the results of this thesis, I would advocate a paradigm shift toward

risk-based comparison of classification systems in the field of ROC analysis, to allow both

the users and producers of classification systems to have more confidence in the

performance of these systems.

5.2 Suggestions for Further Research

Possible areas of further research are:

1. The field of belief functions may be more accessible to end-users as a potential weighting

function on prior probabilities, since performing statistical experiments may be too

expensive or difficult.

2. The framework of independence, if validated, leaves the door open for others to form

and test risk over independently analyzed distributions of costs and class-conditional

probabilities as well as class prevalences, if indeed such distributions may be found.

3. The feasibility of calculating the ROC convex hull (ROCCH) as a time-saving method

for near-real time analysis of classification systems is still in question.
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4. The possible need to test each class-conditional probability for independence against all

class prevalences, not just the prevalence of the class upon which it is conditioned.

5. A better test statistic for independence, other than Kendall’s Tau Correlation

Coefficient, may exist.

6. An application for designed experiments to aid in spread studies or other such risk-based

comparisons.
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Appendix A. Mathematical Proofs

A.1 Conjecture Involving the Binomial Coefficients

Conjecture 1 (Relating to Binomial Coefficients). Given any positive integer m ≤ 47:

m∑

u=0

[
(−1)u

u + 2

(
m

u

)
(m + 2) (m + 1)

]
= 1 (26)

Proof. By exhaustion, directly calculated for m ≤ 47 using Matlab
R© (calculation for

integers greater than 47 exceeds machine precision limits, causing unavoidable

computational error).

A.2 Integrals Involving the Standard n-Simplex

Theorem 2 (Volume Under Standard Simplex). Given any positive integer n , along with

any finite sequence
{
xi

}n

i=1
of real variables, the multiplicative inverse of the integral of the

identity function over the standard n-simplex, as in Definition 23, Chapter I, is simply n !:

1
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0
. . .

∫ 1−
∑n−1

i=1 (xi)

0
dxn . . . dx3 dx2 dx1

= n ! (27)

Proof. To prove the desired result, we shall prove its equivalent: that the value of the

denominator on the left-hand side of (27) is
(

1
n !

)
. We begin by performing the first three

integrations indicated, working from the inside out, to determine if there is a consistent

pattern:
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∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

dxn . . . dx3 dx2 dx1

=

∫ 1

0

∫ 1−x1

0

. . .

∫ 1−
∑n−2

i=1 (xi)

0

[
xn

]∣∣∣
1−

∑n−1
i=1 (xi)

xn=0
dxn−1 . . . dx2 dx1

∗ =

∫ 1

0

∫ 1−x1

0

. . .

∫ 1−
∑n−2

i=1 (xi)

0

(
1 −

n−1∑

i=1

[
xi

])
dxn−1 . . . dx2 dx1

=

∫ 1

0

∫ 1−x1

0

. . .

∫ 1−
∑n−2

i=1 (xi)

0

(
1 −

n−2∑

i=1

[
xi

]
− xn−1

)
dxn−1 . . . dx2 dx1

=

∫ 1

0

. . .

∫ 1−
∑n−3

i=1 (xi)

0

[
−

(
1

2

)(
1 −

n−2∑

i=1

[xi] − xn−1

)2
]∣∣∣∣∣

1−
∑n−2

i=1 (xi)

xn−1=0

dxn−2 . . . dx2 dx1

∗ =

(
1

2 !

) ∫ 1

0

. . .

∫ 1−
∑n−3

i=1 (xi)

0

(
1 −

n−2∑

i=1

[
xi

])2

dxn−2 . . . dx2 dx1

=

(
1

2 !

) ∫ 1

0

. . .

∫ 1−
∑n−3

i=1 (xi)

0

(
1 −

n−3∑

i=1

[
xi

]
− xn−2

)2

dxn−2 . . . dx2 dx1

=

(
1

2 !

) ∫ 1

0

. . .

∫ 1−
∑n−4

i=1 (xi)

0

[
−

(
1

3

)(
1 −

n−3∑

i=1

[xi] − xn−2

)3
]∣∣∣∣∣

1−
∑n−3

i=1 (xi)

xn−2=0

dxn−3 . . . dx1

∗ =

(
1

3 !

) ∫ 1

0

. . .

∫ 1−
∑n−4

i=1 (xi)

0

(
1 −

n−3∑

i=1

[
xi

])3

dxn−3 . . . dx2 dx1

(28)

A consistent, predictable pattern is now recognizable on the lines denoted by an

asterisk (*). When the largest remaining variable index is (n − k), there will be a constant

(
1
k !

)
in front of the integral signs. Also, the resulting integrand will simply be the quantity

(
1 −

n−k∑

i=1

[
xi

])k

, and the upper limit of integration for the innermost integral will be the

quantity

(
1 −

n−(k+1)∑

i=1

[
xi

])
. We may now proceed to complete the calculation.

Performing repeated integration in this manner until the largest remaining variable

index is (n − [n − 1] = 1), we obtain the desired result:
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∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

dxn . . . dx3 dx2 dx1

=

(
1

[n − 1] !

) ∫ 1−
∑n−[(n−1)+1]

i=1 (xi)

0

(
1 −

n−[n−1]∑

i=1

[
xi

])n−1

dxn−[n−1]

=
1

(n − 1) !

∫ 1

0

(
1 − x1

)n−1
dx1

=
1

(n − 1) !

[
−

(1

n

)(
1 − x1

)n
]∣∣∣∣∣

1

x1=0

=
1

n !

(29)

Corollary 1 (Integral of an Axis Variable Over a Standard Simplex). Given any any finite

sequence
{
xi

}n

i=1
of axis variables for a standard n-simplex ∆n, if

m∑

u=0

[
(−1)u

u + 2

(
m

u

)
(m + 2) (m + 1)

]
= 1 holds true for all integers m ≤ n, then the

multiplicative inverse of the integral over ∆n of any one of the axis variables xj ∈
{
xi

}n

i= 1

is (n + 1) !:

1
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0
. . .

∫ 1−
∑n−1

i=1 (xi)

0
xj dxn . . . dx3 dx2 dx1

= (n + 1) ! , ∀ j = 1, 2, 3 , . . . , n

(30)

Proof. To prove the desired result, we shall prove its equivalent: that the value of the

denominator on the left-hand side of (30) is
(

1
[n+1] !

)
. Without loss of generality, consider

the case where j = k, for some fixed k = 1, 2, 3, . . . , n:
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∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
, dxn . . . dx3 dx2 dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

∫ 1−
∑k

i=1 (xi)

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
, dxn . . . dxk+1 dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

∫ 1−
∑k

i=1 (xi)

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
, dxn . . . dxk+1 dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[∫ 1−
∑k

i=1 (xi)

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

dxn . . . dxk+1

]
dxk . . . dx1

(31)

We know from equation patterns in the proof of Theorem 2 above that the term in

brackets on the last line of (31) is the integrand of the identity function integrated over ∆n

after (n − k) integrals have been performed, working from the inside out, and that this

integrand is simply the quantity

(
1

[n−k] !

[
1 −

k∑

i=1

(
xi

)
]n−k )

; therefore, we may write:

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
, dxn . . . dx3 dx2 dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[∫ 1−
∑k

i=1 (xi)

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

dxn . . . dxk+1

]
dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[
1

(n − k) !

(
1 −

k∑

i=1

[
xi

])n−k
]

dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[
1

(n − k) !

(
1 −

k−1∑

i=1

[
xi

]
− xk

)n−k
]

dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[
1

(n − k) !

([
1 −

k−1∑

i=1

(
xi

)]
+

[
−xk

]
)n−k ]

dxk . . . dx1

(32)
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The Binomial Theorem states that (a + b)t =
t∑

u=0

(
t

u

)
at−u bu, where

(
t
u

)
≡ t !

(t−u) ! u !
. Applying this to the term in parentheses in (32), we may write:

([
1 −

k−1∑

i=1

(
xi

)]
+

[
−xk

]
)n−k

=
n−k∑

u=0

[−1]u
(

[n − k]

u

) [
1 −

k−1∑

i=1

(
xi

)
](n−k)−u [

xk

]u

Since we have arbitrarily fixed k, let us temporarily denote m ≡ n − k to ease

notational burdens. This enables us to rewrite (32) above as:

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
, dxn . . . dx3 dx2 dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[
1

(n − k) !

([
1 −

k−1∑

i=1

(
xi

)]
+

[
−xk

]
)n−k ]

dxk . . . dx1

≡

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

]
,

[
1

m !

([
1 −

k−1∑

i=1

(
xi

)]
+

[
−xk

]
)m ]

dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

] (
1

m !

)[
m∑

u=0

[−1]u
(

m

u

) [
1 −

k−1∑

i=1

(
xi

)]m−u [
xk

]u

]
dxk . . . dx1

=

(
1

m !

) m∑

u=0

(−1)u

(
m

u

)[ ∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

[
xk

] (
1 −

k−1∑

i=1

[
xi

])m−u (
xk

)u
dxk . . . dx1

]

=

(
1

m !

) m∑

u=0

(−1)u

(
m

u

)[ ∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u (
xk

)u+1
dxk . . . dx1

]

(33)

where we have interchanged integration with finite summation. It now befalls us to

evaluate the term in brackets in (33) above. We will perform one integration first:
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∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u (
xk

)u+1
dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u
[∫ 1−

∑k−1
i=1 (xi)

0

(
xk

)u+1
dxk

]
dxk−1 . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u [(
1

u + 2

)(
xk

)u+2
]∣∣∣∣∣

1−
∑k−1

i=1 (xi)

xk=0

dxk−1 . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u
[ (

1

u + 2

)(
1 −

k−1∑

i=1

[xi]

)u+2
]

dxk−1 . . . dx1

=

(
1

u + 2

) ∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u (
1 −

k−1∑

i=1

[xi]

)u+2

dxk−1 . . . dx1

=

(
1

u + 2

) ∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m+2

dxk−1 . . . dx1

Multiplying the bracketed term in (33) by the quantity (u + 2), we may now write:

(u + 2)

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

]
)m−u(

xk

)u+1
dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

]
)m+2

dxk−1 . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−2

i=1 (xi)

0

(
1 −

k−2∑

i=1

[
xi

]
− xk−1

)m+2

dxk−1 . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−3

i=1 (xi)

0

[
−

(
1

m + 3

)(
1 −

k−2∑

i=1

[
xi

]
− xk−1

)m+3
]∣∣∣∣∣

1−
∑k−2

i=1 (xi)

xk−1=0

dxk−2 . . . dx1

∗ =

(
1

m + 3

) ∫ 1

0

. . .

∫ 1−
∑k−3

i=1 (xi)

0

(
1 −

k−2∑

i=1

[
xi

])m+3

dxk−2 . . . dx1

=

(
1

m + 3

) ∫ 1

0

. . .

∫ 1−
∑k−3

i=1 (xi)

0

(
1 −

k−3∑

i=1

[
xi

]
− xk−2

)m+3

dxk−2 . . . dx1

(34)
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and if we additionally multiply the bracketed term in (33) by (m + 3), we may then write:

(u + 2)(m + 3)

∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

]
)m−u(

xk

)u+1
dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−3

i=1 (xi)

0

(
1 −

k−3∑

i=1

[
xi

]
− xk−2

)m+3

dxk−2 . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−4

i=1 (xi)

0

[
−

(
1

m + 4

)(
1 −

k−3∑

i=1

[
xi

]
− xk−2

)m+4
]∣∣∣∣∣

1−
∑k−3

i=1 (xi)

xk−2=0

dxk−3 . . . dx1

∗ =

(
1

m + 4

) ∫ 1

0

. . .

∫ 1−
∑k−4

i=1 (xi)

0

(
1 −

k−3∑

i=1

[
xi

])m+4

dxk−3 . . . dx1

(35)

A consistent, predictable pattern is now recognizable on the lines denoted by an

asterisk (*) in (34) and (35) above. When the largest remaining variable index is (k − j),

there will appear a constant in front of the integral signs in the bracketed term in (33):

(
1

u + 2

)(
1

m + 3

)(
1

m + 4

)
. . .

(
1

m + [ j + 1 ]

)
=

(
1

u + 2

)[
1

(m + [ j+1 ]) !
(m+2) !

]

=

(
1

u + 2

)[
(m + 2) !

(m + [ j + 1 ]) !

]

Also, the resulting integrand will simply be the quantity

[ (
1 −

k−j∑

i=1

[
xi

])m+[ j+1 ]
]
, and the

upper limit of integration for the innermost integral will be the quantity

(
1 −

k−[ j+1 ]∑

i=1

[xi]

)
.

We may now proceed to complete the calculation.

Performing repeated integration in this manner until the largest remaining variable
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index is (k − [k − 2] = 2), if we multiply the bracketed term in (33) by the quantity

(u + 2)
[

(m+[ (k−2)+1 ]) !
(m+2) !

]
= (u + 2)

[
(m+[k−1]) !

(m+2) !

]
≡ (u + 2)

[
(n−1) !
(m+2) !

]
, we may write:

(u + 2)

[
(n − 1) !

(m + 2) !

] ∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

]
)m−u(

xk

)u+1
dxk . . . dx1

=

∫ 1

0

. . .

∫ 1−
∑k−[(k−2)+1]

i=1 (xi)

0

(
1 −

k−[k−2]∑

i=1

[
xi

])m+[(k−2)+1]

dxk−[k−2] . . . dx1

=

∫ 1

0

∫ 1−
∑k−[k−1]

i=1 (xi)

0

(
1 −

2∑

i=1

[
xi

])m+[k−1]

dx2 dx1

≡

∫ 1

0

∫ 1−x1

0

(
1 − x1 − x2

)n−1
dx2 dx1

i.e., the bracketed term in (33) may be simply written as:

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
dxn . . . dx3 dx2 dx1

=

(
1

u + 2

)[
(m + 2) !

(n − 1) !

] ∫ 1

0

∫ 1−x1

0

(
1 − x1 − x2

)n−1
dx2 dx1

=

(
1

u + 2

)[
(m + 2) !

(n − 1) !

] ∫ 1

0

[
−

(
1

n

)(
1 − x1 − x2

)n
]∣∣∣∣∣

1−x1

x2=0

dx1

=

(
1

u + 2

)[
(m + 2) !

(n − 1) !

](
1

n

) ∫ 1

0

(
1 − x1

)n
dx1

=

[
(m + 2) !

u + 2

](
1

n !

)[
−

(
1

n + 1

)(
1 − x1

)n+1
]∣∣∣∣∣

1

x1=0

=
(m + 2) !

u + 2

1

(n + 1) !

(36)

Substituting the result of (36) for the bracketed term in (33), the expression we wish

to prove equal to
(

1
[n+1] !

)
for the case where j = k may now be written as:
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∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

. . .

∫ 1−
∑n−1

i=1 (xi)

0

[
xk

]
dxn . . . dx3 dx2 dx1

=

(
1

m !

) m∑

u=0

(−1)u

(
m

u

)[ ∫ 1

0

. . .

∫ 1−
∑k−1

i=1 (xi)

0

(
1 −

k−1∑

i=1

[
xi

])m−u (
xk

)u+1
dxk . . . dx1

]

=

(
1

m !

) m∑

u=0

(−1)u

(
m

u

)[
(m + 2) !

u + 2

1

(n + 1) !

]

=
1

(n + 1) !

m∑

u=0

[
(−1)u

u + 2

(
m

u

)
(m + 2) (m + 1)

]

=
1

(n + 1) !

(37)

where the last step may be taken due to the fact that m ≡ n − k for arbitrary

k = 1, . . . n, hence m ≤ n, and the result follows from the hypothesis.
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